📚SAT (Digital) Unit 3 – SAT Math – Advanced Math

Advanced Math in the SAT covers a range of complex topics, from polynomial and quadratic equations to exponential and logarithmic functions. These concepts build on basic algebra, introducing more sophisticated problem-solving techniques and mathematical models. Students will explore rational and radical functions, complex numbers, and fundamental theorems. The unit emphasizes graphing, equation solving, and applying these concepts to real-world scenarios, preparing students for higher-level mathematics and scientific applications.

Key Concepts

  • Polynomial functions involve variables with whole number exponents and can be added, subtracted, or multiplied
  • Quadratic equations are polynomials of degree 2 and have the general form ax2+bx+c=0ax^2 + bx + c = 0
  • Exponential functions have variables in the exponent and grow or decay at a constant rate (doubling time, half-life)
  • Logarithms are the inverse of exponential functions and can be used to solve equations with variables in the exponent
  • Rational functions are ratios of polynomial functions and have asymptotes where the denominator equals zero
    • Vertical asymptotes occur when the denominator equals zero for a specific x-value
    • Horizontal asymptotes describe the function's long-term behavior as x approaches positive or negative infinity
  • Radical functions involve square roots, cube roots, or higher-order roots of variables
  • Complex numbers consist of a real part and an imaginary part in the form a+bia + bi where i=1i = \sqrt{-1}

Fundamental Equations

  • Quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} solves quadratic equations of the form ax2+bx+c=0ax^2 + bx + c = 0
  • Exponential growth/decay: A=A0ektA = A_0e^{kt} where A0A_0 is the initial amount, kk is the growth/decay rate, and tt is time
  • Logarithmic properties: logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y), logb(xy)=logb(x)logb(y)\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y), logb(xn)=nlogb(x)\log_b(x^n) = n\log_b(x)
  • Rational function asymptotes:
    • Vertical: Occur when the denominator equals zero
    • Horizontal: Determined by the ratio of the leading coefficients of the numerator and denominator polynomials
  • Fundamental Theorem of Algebra: Every polynomial of degree nn has exactly nn complex roots (including repeated roots)
  • Binomial Theorem: Expands (x+y)n(x + y)^n into a sum of terms involving powers of xx and yy with binomial coefficients
  • De Moivre's Theorem: (cosθ+isinθ)n=cos(nθ)+isin(nθ)(cos\theta + i sin\theta)^n = cos(n\theta) + i sin(n\theta) relates complex numbers and trigonometry

Problem-Solving Strategies

  • Factoring quadratic expressions to find roots and solve equations
  • Completing the square to rewrite quadratic equations in vertex form and find the axis of symmetry
  • Graphing functions to visualize their behavior, intercepts, and asymptotes
    • Identify the domain and range of the function
    • Determine the function's end behavior (as x approaches positive or negative infinity)
  • Substitution to simplify expressions or solve systems of equations
  • Logarithmic properties to simplify, expand, or condense logarithmic expressions
  • Exponent rules to simplify expressions with variables in the exponent
    • Power rule: xaxb=xa+bx^a \cdot x^b = x^{a+b}
    • Product rule: (xa)b=xab(x^a)^b = x^{ab}
  • Synthetic division to efficiently divide polynomials by linear factors
  • Rational root theorem to find potential rational roots of polynomial equations

Common Question Types

  • Solving quadratic equations using factoring, completing the square, or the quadratic formula
  • Graphing polynomial, exponential, logarithmic, and rational functions
    • Identifying key features such as intercepts, asymptotes, and end behavior
  • Simplifying expressions using exponent rules, logarithmic properties, or complex number operations
  • Analyzing the behavior of functions based on their equations or graphs (growth rates, asymptotes, periodicity)
  • Solving systems of equations involving polynomial, exponential, or logarithmic functions
  • Applying exponential and logarithmic functions to real-world problems (compound interest, population growth, radioactive decay)
  • Manipulating rational expressions by factoring, simplifying, or performing arithmetic operations
  • Solving equations with radicals or complex numbers

Advanced Techniques

  • Partial fraction decomposition to break down complex rational expressions into simpler terms
    • Useful for integrating rational functions or solving certain types of differential equations
  • L'Hôpital's rule to evaluate limits of indeterminate forms (0/0, /\infty/\infty, 0 · \infty, \infty - \infty, 000^0, 11^\infty, 0\infty^0)
    • Differentiate the numerator and denominator separately and evaluate the new limit
  • Euler's formula: eix=cos(x)+isin(x)e^{ix} = cos(x) + i sin(x) connects exponential functions with complex numbers and trigonometry
  • Polar form of complex numbers: z=r(cosθ+isinθ)=reiθz = r(cos\theta + i sin\theta) = re^{i\theta} where rr is the modulus and θ\theta is the argument
  • Conic sections (circles, ellipses, hyperbolas, parabolas) in standard and general forms
    • Identify key features such as foci, directrices, and eccentricity
  • Matrix operations to solve systems of linear equations or analyze transformations in the plane or space
  • Sequences and series (arithmetic, geometric, Taylor series) to model patterns or approximate functions
    • Use formulas for the nth term, sum, or convergence properties

Practice Problems

  • Solve the equation 2x27x15=02x^2 - 7x - 15 = 0 using the quadratic formula
  • Graph the rational function f(x)=x24x2f(x) = \frac{x^2 - 4}{x - 2} and identify its vertical and horizontal asymptotes
  • Simplify the expression log2(16)log2(4)+log2(1/8)\log_2(16) - \log_2(4) + \log_2(1/8)
  • Find the complex roots of the polynomial x4+1x^4 + 1 using De Moivre's Theorem
  • Determine the end behavior and any holes in the graph of g(x)=x32x2+x2x24g(x) = \frac{x^3 - 2x^2 + x - 2}{x^2 - 4}
  • Solve the system of equations y=2xy = 2^x and y=3x1y = 3x - 1 graphically or algebraically
  • Use partial fraction decomposition to integrate 3x+2(x1)(x+2)dx\int \frac{3x + 2}{(x - 1)(x + 2)} dx
  • Find the focus, directrix, and eccentricity of the ellipse (x3)216+(y+1)29=1\frac{(x - 3)^2}{16} + \frac{(y + 1)^2}{9} = 1

Tips and Tricks

  • Memorize common quadratic factoring patterns (difference of squares, perfect square trinomials) to save time
  • Use the rational root theorem to quickly identify potential rational roots of polynomial equations
  • Recognize the graphs of basic functions (linear, quadratic, exponential, logarithmic) and their transformations
    • Shifts, reflections, stretches, and compressions can be identified from the function's equation
  • Logarithms can be used to "undo" exponents and solve equations like 2x=102^x = 10 by applying log2\log_2 to both sides
  • When graphing rational functions, first identify the asymptotes and then plot additional points to sketch the curve
  • Euler's formula can simplify complex number calculations and prove trigonometric identities
  • The discriminant b24acb^2 - 4ac of a quadratic equation determines the nature of its roots (real distinct, real repeated, or complex)
  • In exponential and logarithmic equations, isolate the exponential or logarithmic term before solving for the variable

Potential Pitfalls

  • Forgetting to use the correct order of operations (PEMDAS) when simplifying expressions
  • Misidentifying the degree of a polynomial function, especially when terms are missing or out of order
  • Incorrectly applying exponent rules, such as (xa)b=xa+b(x^a)^b = x^{a+b} instead of xabx^{ab}
  • Failing to consider the domain restrictions when working with rational, logarithmic, or radical functions
    • Rational functions: Denominator cannot equal zero
    • Logarithmic functions: Argument must be positive
    • Radical functions: Radicand must be non-negative for even roots
  • Misinterpreting the end behavior of rational functions based on the degree of the numerator and denominator
  • Confusing the properties of exponential and logarithmic functions, such as eln(x)=xe^{\ln(x)} = x and ln(ex)=x\ln(e^x) = x
  • Oversimplifying or canceling terms in rational expressions without factoring first
  • Neglecting to consider complex solutions when solving polynomial equations of degree 2 or higher


© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.