You have 3 free guides left 😟
Unlock your guides
You have 3 free guides left 😟
Unlock your guides

8.3 Morphology of semicrystalline polymers

2 min readjuly 23, 2024

Semicrystalline polymers have a unique two-phase structure with crystalline and . This blend gives them a special mix of properties like strength from the ordered parts and flexibility from the disordered areas.

Understanding the morphology of these polymers is key. We'll look at how factors like , , and affect their behavior. We'll also explore techniques used to study their structure.

Morphology of Semicrystalline Polymers

Morphology of semicrystalline polymers

Top images from around the web for Morphology of semicrystalline polymers
Top images from around the web for Morphology of semicrystalline polymers
  • Semicrystalline polymers have a two-phase structure consisting of interspersed with amorphous regions
    • Crystalline regions have highly ordered, densely packed polymer chains arranged in a regular, repeating pattern ()
      • Impart strength, rigidity, and chemical resistance to the polymer
    • Amorphous regions have disordered, randomly arranged, and entangled polymer chains with no specific orientation ()
      • Provide flexibility, ductility, and impact resistance to the polymer
  • The ratio of crystalline to amorphous regions varies depending on factors such as polymer type, molecular structure, and processing conditions ()

Degree of crystallinity

  • Degree of crystallinity represents the fraction of the polymer that exists in the crystalline state
    • Quantified as a percentage of the total polymer volume or mass
  • Increasing the degree of crystallinity enhances strength, stiffness, density, chemical resistance, and ()
  • Decreasing the degree of crystallinity improves flexibility, elasticity, impact resistance, and optical clarity ()
  • Degree of crystallinity is influenced by polymer structure (tacticity, copolymerization) and processing conditions (cooling rate, annealing)

Chain folding and tie molecules

  • Chain folding occurs in the crystalline regions, where polymer chains fold back and forth upon themselves to form ordered, -like structures
    • Lamellae have a typical thickness of 10-20 nm
    • Chain folding enables efficient packing of chains in the crystalline regions ()
  • Tie molecules are polymer chains that connect different crystalline regions by extending through the amorphous region
    • Provide , integrity, and stress distribution to the polymer
    • Prevent crack propagation by bridging crystalline domains ()
  • The presence of chain folding and tie molecules contributes to the unique balance of strength (crystalline regions) and flexibility (amorphous regions) in semicrystalline polymers

Characterization of polymer morphology

  • (XRD) provides information about crystalline structure and degree of crystallinity
    • Sharp, intense diffraction peaks indicate crystalline regions, while broad, diffuse peaks represent amorphous regions
    • Degree of crystallinity is estimated from the relative intensities of crystalline and amorphous peaks
  • Microscopy techniques offer visual insights into polymer morphology at different scales
    1. Optical microscopy visualizes larger-scale features like but has limited resolution
    2. (SEM) reveals high-resolution surface morphology, including spherulites, lamellae, and phase separation
    3. (TEM) provides the highest resolution for imaging internal structure, directly visualizing lamellae, chain folding, and tie molecules (requires thin samples < 100 nm)
  • (DSC) measures thermal transitions (melting, glass transition) and estimates degree of crystallinity based on melting enthalpy
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.


© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Glossary