Abstract Linear Algebra II
The Cauchy-Schwarz inequality states that for any vectors $\mathbf{u}$ and $\mathbf{v}$ in an inner product space, the absolute value of their inner product is less than or equal to the product of their norms. This can be expressed mathematically as $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$. This inequality is foundational in understanding concepts such as linear independence, orthogonality, and measuring distances in vector spaces, making it crucial for analyzing relationships between vectors and their properties in higher dimensions.
congrats on reading the definition of Cauchy-Schwarz Inequality. now let's actually learn it.