Analytic Geometry and Calculus
In the context of Taylor series, the term 'order' refers to the degree of accuracy that a polynomial approximation provides when representing a function near a specific point. Higher order indicates that the approximation includes more terms from the series, thus allowing for a closer match to the function's behavior in a given interval. Understanding order is crucial when evaluating how well a Taylor series can approximate a function and determines the convergence and utility of the series in practical applications.
congrats on reading the definition of order. now let's actually learn it.