Autonomous Vehicle Systems
Actor-critic is a type of reinforcement learning algorithm that combines two components: the actor and the critic. The actor is responsible for selecting actions based on the current policy, while the critic evaluates those actions by estimating the value function, providing feedback to improve the policy. This dual structure allows for more efficient learning and better convergence in complex environments, making it particularly useful in deep learning scenarios where large state spaces are common.
congrats on reading the definition of actor-critic. now let's actually learn it.