Calculus I

study guides for every class

that actually explain what's on your next test

Difference law for limits

from class:

Calculus I

Definition

The Difference Law for Limits states that the limit of the difference of two functions is equal to the difference of their limits. Mathematically, if $\lim_{{x \to c}} f(x) = L$ and $\lim_{{x \to c}} g(x) = M$, then $\lim_{{x \to c}} [f(x) - g(x)] = L - M$.

congrats on reading the definition of Difference law for limits. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. The Difference Law for Limits can be applied when both individual limits exist.
  2. It simplifies complex limit calculations by breaking them into simpler parts.
  3. This law holds true regardless of whether the limits are finite or infinite.
  4. If either individual limit does not exist, the Difference Law cannot be applied directly.
  5. Combining this law with other limit laws like Sum and Product Laws can solve more complex problems.

Review Questions

  • What is the Difference Law for Limits, and how is it mathematically expressed?
  • Can you apply the Difference Law if one of the individual function limits does not exist? Explain.
  • How would you use the Difference Law in conjunction with other Limit Laws to solve a problem?

"Difference law for limits" also found in:

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides