Control Theory
A Taylor series expansion is a representation of a function as an infinite sum of terms, calculated from the values of its derivatives at a single point. This mathematical tool allows us to approximate complex functions using polynomials, which can be particularly useful for simplifying analysis and solving problems in various fields, including control theory. By evaluating the function and its derivatives at a specific point, we can create a polynomial that closely matches the function's behavior near that point.
congrats on reading the definition of Taylor Series Expansion. now let's actually learn it.