Data, Inference, and Decisions
BIC, or Bayesian Information Criterion, is a statistical criterion used for model selection among a finite set of models. It balances the goodness of fit of the model against its complexity, penalizing models that use more parameters to avoid overfitting. This makes BIC particularly useful in identifying the best model when considering multiple linear regressions, estimating parameters through maximum likelihood, and selecting appropriate ARIMA models in time series analysis.
congrats on reading the definition of BIC. now let's actually learn it.