Functional Analysis
The Banach-Steinhaus Theorem, also known as the Uniform Boundedness Principle, asserts that for a family of continuous linear operators from a Banach space to a normed space, if each operator in the family is pointwise bounded on the entire space, then the operators are uniformly bounded in operator norm. This theorem highlights the relationship between pointwise and uniform boundedness and has significant implications in functional analysis.
congrats on reading the definition of Banach-Steinhaus Theorem. now let's actually learn it.