Functional Analysis
A bounded linear operator is a linear transformation between two normed spaces that maps bounded sets to bounded sets, ensuring continuity. This means that there exists a constant $C$ such that for every vector $x$ in the domain, the norm of the operator applied to $x$ is less than or equal to $C$ times the norm of $x$. Bounded linear operators play a crucial role in functional analysis as they preserve structure and facilitate the study of continuity, adjointness, and compactness.
congrats on reading the definition of Bounded Linear Operator. now let's actually learn it.