study guides for every class

that actually explain what's on your next test

Bernoulli

from class:

College Physics II – Mechanics, Sound, Oscillations, and Waves

Definition

Bernoulli's Equation describes the relationship between pressure, velocity, and elevation in a moving fluid. It is derived from the principle of conservation of energy for flowing fluids.

congrats on reading the definition of Bernoulli. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. Bernoulli's Equation can be written as $P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$, where $P$ is pressure, $\rho$ is fluid density, $v$ is velocity, and $h$ is height.
  2. The equation assumes incompressible flow with no friction losses.
  3. It explains why an increase in a fluid’s speed results in a decrease in pressure or potential energy within the fluid.
  4. Bernoulli's principle can be used to explain various phenomena such as airplane wing lift and the Venturi effect.
  5. The equation applies along a streamline; different streamlines can have different constant values.

Review Questions

  • What are the main assumptions made when applying Bernoulli’s Equation?
  • How does Bernoulli’s Equation explain the functioning of an airplane wing?
  • Can Bernoulli’s Equation be applied to compressible fluids? Why or why not?
© 2025 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides