study guides for every class

that actually explain what's on your next test

Moment of inertia

from class:

College Physics II – Mechanics, Sound, Oscillations, and Waves

Definition

Moment of inertia is a measure of an object's resistance to changes in its rotational motion about a fixed axis. It depends on the mass distribution relative to the axis of rotation.

congrats on reading the definition of moment of inertia. now let's actually learn it.

ok, let's learn stuff

5 Must Know Facts For Your Next Test

  1. The moment of inertia for a point mass is calculated as $I = mr^2$, where $m$ is the mass and $r$ is the distance from the axis of rotation.
  2. For extended bodies, the moment of inertia is found by integrating $r^2 \, dm$ over the entire mass distribution.
  3. The Parallel Axis Theorem states that $I = I_{cm} + Md^2$, where $I_{cm}$ is the moment of inertia about the center of mass, $M$ is the total mass, and $d$ is the distance between axes.
  4. A higher moment of inertia implies greater resistance to rotational acceleration under an applied torque.
  5. Common moments of inertia include that for a solid sphere ($I = \frac{2}{5}MR^2$) and a thin rod about its end ($I = \frac{1}{3}ML^2$).

Review Questions

  • How do you calculate the moment of inertia for a point mass?
  • What does the Parallel Axis Theorem state?
  • Why does an object with a higher moment of inertia resist changes in rotational motion more than one with a lower moment?
© 2025 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Guides