Probabilistic Decision-Making
The Akaike Information Criterion (AIC) is a statistical measure used to compare the goodness of fit of different models, particularly in the context of nonlinear regression models. AIC estimates the quality of each model relative to others, balancing model complexity against its ability to explain the data, with lower AIC values indicating a better model fit. This helps in model selection by penalizing overly complex models that may overfit the data.
congrats on reading the definition of AIC - Akaike Information Criterion. now let's actually learn it.