Collaborative Data Science
A Type II error occurs when a statistical test fails to reject a false null hypothesis, meaning that the test incorrectly concludes there is no effect or difference when one actually exists. This type of error is significant because it can lead to false negatives, where real relationships or effects in the data go undetected. Understanding Type II errors is crucial in assessing the validity of research findings and the implications of inferential statistics on scientific conclusions.
congrats on reading the definition of Type II Error. now let's actually learn it.