You have 3 free guides left 😟
Unlock your guides
You have 3 free guides left 😟
Unlock your guides

14.3 Pascal's Principle and Hydraulics

2 min readjune 24, 2024

Pascal's_Principle_0### is a game-changer in fluid mechanics. It explains how pressure changes in enclosed fluids and forms the basis for hydraulic systems. This principle has wide-ranging applications, from car lifts to excavators.

Hydraulic systems use 's principle to multiply . By applying a small force to a small , we can generate a much larger force on a bigger piston. This simple concept powers many machines we use daily.

Pascal's Principle and Hydraulic Systems

Pascal's principle for fluid pressure

Top images from around the web for Pascal's principle for fluid pressure
Top images from around the web for Pascal's principle for fluid pressure
  • States a change in pressure applied to an enclosed fluid transmits undiminished to every point in the fluid and walls of the containing vessel
  • Pressure defined as force per unit P=FAP = \frac{F}{A}, a scalar quantity acting equally in all directions
  • Implications:
    • Pressure applied to one part of an enclosed fluid transmits equally to all other parts
    • Pressure at any point in a depends only on depth and , not container shape (, )
    • In a , a small force applied over a small area generates a large force over a larger area (, )
    • This principle of is fundamental to

Force multiplication in hydraulics

  • Hydraulic systems consist of two connected pistons with different cross-sectional areas filled with an ()
  • According to Pascal's principle, pressure is the same in both pistons P1=P2P_1 = P_2
  • Force on each piston given by F1=P1A1F_1 = P_1A_1 and F2=P2A2F_2 = P_2A_2
  • Since P1=P2P_1 = P_2, we can write F1A1=F2A2\frac{F_1}{A_1} = \frac{F_2}{A_2}, showing the ratio of forces equals the ratio of areas
  • occurs when A2>A1A_2 > A_1, resulting in F2>F1F_2 > F_1 (, )
    • The larger the difference in areas, the greater the force multiplication
  • This process is known as

Pressure and force in hydraulic devices

  1. Identify given information (applied force, piston areas, pressure)
  2. Determine unknown quantity to calculate (force, pressure, area)
  3. Apply appropriate equations P1=P2P_1 = P_2 and F1A1=F2A2\frac{F_1}{A_1} = \frac{F_2}{A_2}
  4. Solve for unknown quantity
  • Example problem:
    • A has a small piston with an area of 10 cm² and a large piston with an area of 200 cm². If a force of 50 N is applied to the small piston, what is the force on the large piston?
      • Given: A1=10 cm2A_1 = 10 \text{ cm}^2, A2=200 cm2A_2 = 200 \text{ cm}^2, F1=50 NF_1 = 50 \text{ N}
      • Unknown: F2F_2
      • Apply the equation: F1A1=F2A2\frac{F_1}{A_1} = \frac{F_2}{A_2}
      • Solve for F2F_2: F2=F1A2A1=(50 N)(200 cm2)10 cm2=1000 NF_2 = \frac{F_1A_2}{A_1} = \frac{(50 \text{ N})(200 \text{ cm}^2)}{10 \text{ cm}^2} = 1000 \text{ N}

Fluid Properties in Hydraulic Systems

  • : Hydraulic systems rely on incompressible fluids to efficiently transmit pressure
  • : The study of fluids at rest, which forms the basis for understanding hydraulic systems
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.


© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Glossary