You have 3 free guides left 😟
Unlock your guides
You have 3 free guides left 😟
Unlock your guides

Exponential, logarithmic, and play a crucial role in integration. These functions have unique properties that make them essential in solving various mathematical problems. Understanding their is key to mastering advanced calculus.

Special functions like Gamma and Beta expand our integration toolkit. They're particularly useful in complex scenarios where standard methods fall short. Applying these functions to solve differential equations and showcases the practical power of integration techniques.

Exponential, Logarithmic, and Hyperbolic Functions

Properties of exponential and logarithmic functions

Top images from around the web for Properties of exponential and logarithmic functions
Top images from around the web for Properties of exponential and logarithmic functions
    • exdx=ex+C\int e^x dx = e^x + C integrates the natural exponential function exe^x
    • axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a} + C, where a>0a > 0 and a1a \neq 1 integrates exponential functions with a base other than ee (2x2^x, 10x10^x)
    • lnxdx=xlnxx+C\int \ln x dx = x \ln x - x + C integrates the natural logarithm function lnx\ln x
    • logaxdx=xlnxxlna+C\int \log_a x dx = \frac{x \ln x - x}{\ln a} + C, where a>0a > 0 and a1a \neq 1 integrates logarithmic functions with a base other than ee (log2x\log_2 x, log10x\log_{10} x)
    • Use substitution to simplify the integral when the integrand contains a composite function (e2xe^{2x}, ln(x2)\ln(x^2))
    • Example: e2xdx=12e2x+C\int e^{2x} dx = \frac{1}{2} e^{2x} + C (let u=2xu = 2x) demonstrates using substitution to integrate a composite exponential function

Integration of hyperbolic functions

  • Hyperbolic functions
    • sinhx=exex2\sinh x = \frac{e^x - e^{-x}}{2}, coshx=ex+ex2\cosh x = \frac{e^x + e^{-x}}{2}, tanhx=sinhxcoshx\tanh x = \frac{\sinh x}{\cosh x} define the hyperbolic sine, cosine, and tangent functions
    • sinhxdx=coshx+C\int \sinh x dx = \cosh x + C integrates the hyperbolic sine function
    • coshxdx=sinhx+C\int \cosh x dx = \sinh x + C integrates the hyperbolic cosine function
    • tanhxdx=ln(coshx)+C\int \tanh x dx = \ln (\cosh x) + C integrates the hyperbolic tangent function
    • sinh1x=ln(x+x2+1)\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1}), cosh1x=ln(x+x21)\cosh^{-1} x = \ln (x + \sqrt{x^2 - 1}), tanh1x=12ln(1+x1x)\tanh^{-1} x = \frac{1}{2} \ln (\frac{1 + x}{1 - x}) define the inverse hyperbolic functions
    • sinh1xdx=xsinh1xx2+1+C\int \sinh^{-1} x dx = x \sinh^{-1} x - \sqrt{x^2 + 1} + C integrates the inverse hyperbolic sine function
    • cosh1xdx=xcosh1xx21+C\int \cosh^{-1} x dx = x \cosh^{-1} x - \sqrt{x^2 - 1} + C integrates the inverse hyperbolic cosine function
    • tanh1xdx=xtanh1x+12ln(1x2)+C\int \tanh^{-1} x dx = x \tanh^{-1} x + \frac{1}{2} \ln (1 - x^2) + C integrates the inverse hyperbolic tangent function

Special Functions and Applications

Special functions in integration

  • Gamma function
    • Γ(z)=0tz1etdt\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, where (z)>0\Re(z) > 0 defines the Gamma function, an extension of the factorial to complex numbers
    • Properties: Γ(z+1)=zΓ(z)\Gamma(z+1) = z \Gamma(z), Γ(n)=(n1)!\Gamma(n) = (n-1)! for positive integers nn relate the Gamma function to factorials (Γ(5)=4!\Gamma(5) = 4!)
    • B(x,y)=01tx1(1t)y1dtB(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, where (x)>0\Re(x) > 0 and (y)>0\Re(y) > 0 defines the Beta function, which is related to the Gamma function
    • Relationship with Gamma function: B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} expresses the Beta function in terms of the Gamma function
  • Integration techniques
    • Recognize the presence of Gamma or Beta functions in the integrand (01x2(1x)3dx\int_0^1 x^2 (1-x)^3 dx)
    • Apply properties and relationships to simplify the integral (B(3,4)=Γ(3)Γ(4)Γ(7)B(3, 4) = \frac{\Gamma(3) \Gamma(4)}{\Gamma(7)})

Applications of integration techniques

    • dydx=f(x)g(y)\frac{dy}{dx} = f(x)g(y) can be solved by separating variables and integrating both sides (dydx=xydyy=xdx\frac{dy}{dx} = xy \rightarrow \int \frac{dy}{y} = \int x dx)
    • Example: dydx=xy\frac{dy}{dx} = xy, solve for y(x)y(x) given y(1)=2y(1) = 2 demonstrates solving a separable differential equation with an initial condition
    • dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x) can be solved using an integrating factor μ(x)=eP(x)dx\mu(x) = e^{\int P(x) dx} to transform the equation into a separable form
    • Solution: y(x)=1μ(x)(μ(x)Q(x)dx+C)y(x) = \frac{1}{\mu(x)} \left(\int \mu(x) Q(x) dx + C\right) gives the general solution for a linear first-order differential equation
  • Initial value problems
    • Solve the differential equation and apply the given initial condition to determine the constant of integration (y(0)=1y(0) = 1)
    • Example: dydx=ex\frac{dy}{dx} = e^x, y(0)=1y(0) = 1, find y(x)y(x) demonstrates solving an initial value problem using integration techniques
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.


© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Glossary