You have 3 free guides left 😟
Unlock your guides
You have 3 free guides left 😟
Unlock your guides

12.6 Infrared Spectroscopy

3 min readmay 7, 2024

is a powerful tool for identifying in organic molecules. By analyzing the absorption of infrared radiation, chemists can determine the structure and composition of compounds based on characteristic vibrations of chemical bonds.

This technique relies on the interaction between infrared light and . Different functional groups absorb at specific frequencies, creating unique spectral fingerprints. Understanding these patterns allows for rapid and accurate identification of organic compounds.

Infrared Spectroscopy

Functional groups in IR spectra

Top images from around the web for Functional groups in IR spectra
Top images from around the web for Functional groups in IR spectra
  • Functional groups absorb infrared radiation at characteristic allows for their identification in organic molecules
    • exhibit C-H in the range of 2850-2960 cm1^{-1} (methane, ethane)
    • display vibrations between 1620-1680 cm1^{-1} (ethene, propene)
    • show C\equivC stretching vibrations from 2100-2260 cm1^{-1} (acetylene, propyne)
    • feature vibrations in the 3200-3600 cm1^{-1} range (methanol, ethanol)
    • have vibrations between 1700-1725 cm1^{-1} (acetic acid, benzoic acid)
    • exhibit vibrations from 3300-3500 cm1^{-1} (methylamine, aniline)
  • in an IR spectrum indicates the relative abundance of a functional group in the molecule
    • Strong peaks suggest a higher concentration of the corresponding functional group (prominent O-H peak in ethanol)
    • Weak peaks indicate a lower concentration of the corresponding functional group (small C\equivC peak in a complex molecule)
  • in an IR spectrum provides information about the molecular environment of the functional group
    • Broad peaks suggest or a variety of molecular environments (O-H peak in alcohols)
    • Sharp peaks indicate a more uniform molecular environment (C-H peaks in alkanes)

Molecular vibrations and IR radiation

  • Infrared radiation causes molecules to vibrate by absorbing energy when the frequency of the radiation matches the natural frequency of the molecular vibration
    • The absorbed energy increases the amplitude of the vibration leading to a peak in the IR spectrum
    • This process is an example of
  • Molecular vibrations can be classified as stretching or bending depending on the type of motion
    • Stretching vibrations involve changes in bond length and can be further categorized:
      1. : bonds vibrate in phase (CO2_2 symmetric stretch)
      2. : bonds vibrate out of phase (CO2_2 asymmetric stretch)
    • involve changes in bond angle and include:
      1. In-plane bending such as and (H2_2O scissoring)
      2. Out-of-plane bending such as and (NH3_3 wagging)
  • The frequency of a molecular vibration depends on the mass of the atoms and the strength of the bond between them
    • Heavier atoms and weaker bonds result in lower vibrational frequencies (C-I stretching)
    • Lighter atoms and stronger bonds result in higher vibrational frequencies (O-H stretching)

Wavenumber calculations in IR spectroscopy

  • Wavenumber (ν~\tilde{\nu}) is the reciprocal of the wavelength (λ\lambda) and is expressed in units of cm1^{-1}
    • The relationship between wavenumber and wavelength is given by: ν~=1λ\tilde{\nu} = \frac{1}{\lambda}
  • Wavelength is typically expressed in (μ\mum) in infrared spectroscopy and needs to be converted to centimeters (cm) for wavenumber calculations
    • To convert from micrometers to centimeters, divide by 10,000 (1 μ\mum = 1 ×\times 104^{-4} cm)
  • To calculate wavenumber from wavelength:
    1. Convert wavelength from micrometers to centimeters
    2. Take the reciprocal of the wavelength in centimeters to obtain wavenumber
    • Example calculation for a wavelength of 5 μ\mum:
      1. Convert 5 μ\mum to cm: 5 μ\mum = 5 ×\times 104^{-4} cm
      2. Calculate wavenumber: ν~=15×104 cm=2000 cm1\tilde{\nu} = \frac{1}{5 \times 10^{-4} \text{ cm}} = 2000 \text{ cm}^{-1}

Advanced IR Spectroscopy Techniques

  • is a modern technique that offers improved sensitivity and speed
    • FTIR uses an interferometer to collect data over a wide spectral range simultaneously
    • The resulting interferogram is converted into a spectrum using a mathematical process called Fourier transform
  • is a sampling technique used in conjunction with FTIR
    • ATR allows for direct analysis of solid or liquid samples without extensive preparation
    • It utilizes the principle of total internal reflection to generate an evanescent wave that interacts with the sample
  • The relates the absorption of light to the properties of the material through which it is traveling
    • This law is fundamental in quantitative analysis using IR spectroscopy
  • IR spectroscopy is part of the broader , which includes other forms of radiation such as visible light and X-rays
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.


© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.

© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Glossary
Glossary