All Subjects
Light
College Physics III – Thermodynamics, Electricity, and Magnetism
Temperature and Heat
Kinetic Theory of Gases
First Law of Thermodynamics
Second Law of Thermodynamics
Electric Charges and Fields
Gauss's Law in Electromagnetism
Electric Potential
Capacitance in Electrical Systems
Current and Resistance in Circuits
Direct-Current Circuits
Magnetic Forces and Fields
Magnetic Field Sources
Electromagnetic Induction
Inductance in Electric Circuits
AC Circuits
Electromagnetic Waves
Glossary
All Key Terms
College Physics III – Thermodynamics, Electricity, and Magnetism
Browse all College Physics III – Thermodynamics, Electricity, and Magnetism Key Terms
ALL
#
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
#
$arepsilon_0$
$ ext{epsilon}_0$
$ ext{lambda} = \frac{1}{ ext{sqrt}{2} ext{pi} d^2 n}$
$ ext{lambda}$
$ ext{mathcal{E}} = ext{Blv} ext{sin} heta$
$ ext{mathcal{E}} = ext{NBA} ext{omega} ext{sin}( ext{omega} ext{t})$
$ ext{mathcal{E}}$
$ ext{mathcal{E}}_{input} = ext{mathcal{E}}_{back} + IR$
$ ext{mathcal{E}}_{max} = NBA ext{omega}$
$ ext{mathcal{E}}_{net} = ext{mathcal{E}}_{input} - ext{mathcal{E}}_{back}$
$ ext{vec{E}}$
$ ext{ω} = ext{√(ω₀² - γ²)}$
$ ext{ω}_0 = \frac{1}{ ext{√}(LC)}$
$ heta$
$ abla U = rac{3}{2}nR abla T$
$ Delta U = Q + W$
$rac{Q_{enclosed}}{ ext{perm}}$
$\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + ... + \frac{1}{C_n}$
$\gamma = \frac{R}{2L}$
$\oint$
$B$
$C = C_e + C_{lattice}$
$C_V = \frac{3}{2}Nk_B$
$C_V = \frac{3}{2}nR$
$C_V$
$C_{e} = \frac{\pi^2}{2}Nk_B\frac{T}{T_F}$
$C_{lattice}$
$C_{total} = C_1 + C_2 + ... + C_n$
$d\vec{A}$
$e = 1 - \frac{T_C}{T_H}$
$E = \frac{V}{d}$
$I = Q/t$
$I(t) = I_0e^{-eta t}\cos(\omega t + \phi)$
$k_B$
$l$
$P_i = x_i P_{total}$
$P_R(t) = I^2(t)R$
$P_{total} = P_1 + P_2 + ... + P_n$
$Q = C_V\Delta T$
$Q_{enclosed}$
$R < 2 extbackslash sqrt{ extbackslash frac{L}{C}}$
$R = 2 extbackslash sqrt{rac{L}{C}}$
$R > 2\sqrt{\frac{L}{C}}$
$U = \frac{1}{2} \frac{Q^2}{C}$
$u = \frac{1}{2} \varepsilon_0 E^2$
$U = \frac{1}{2} CV^2$
$U = \frac{3}{2}nRT$
$U_C(t) = \frac{1}{2}CV^2_C(t)$
$U_L(t) = \frac{1}{2}LI^2(t)$
$v$
$V_C(t) = \frac{1}{C}\int I(t)dt$
$V_L(t) = L\frac{dI(t)}{dt}$
$V_R(t) = RI(t)$
$v_{rms} = \sqrt{\frac{3kT}{m}}$
$W = -P \\Delta V$
$x_i = \frac{n_i}{n_{total}}$
$z = \sqrt{2} \pi d^2 n v_{rms}$
µC
ΔL = αL₀ΔT
ΔS
ΔS = Q/T
ΔT
ΔU = Q - W
ΔV = βV₀ΔT
ΣI
ΣV
Φ = BA
Φ_B
ΦB
ΦE = Q/ε0
α
γ
ε
ε = -dΦ/dt
ε = -L(dI/dt)
1
2
3
4
5
…
23
About Us
About Fiveable
Blog
Careers
Testimonials
Code of Conduct
Terms of Use
Privacy Policy
CCPA Privacy Policy
Resources
Cram Mode
AP Score Calculators
Study Guides
Practice Quizzes
Glossary
Crisis Text Line
Request a Feature
Report an Issue
Stay Connected
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
About Us
About Fiveable
Blog
Careers
Testimonials
Code of Conduct
Terms of Use
Privacy Policy
CCPA Privacy Policy
Resources
Cram Mode
AP Score Calculators
Study Guides
Practice Quizzes
Glossary
Crisis Text Line
Request a Feature
Report an Issue
© 2024 Fiveable Inc. All rights reserved.
AP® and SAT® are trademarks registered by the College Board, which is not affiliated with, and does not endorse this website.
Back
Practice Quiz
Guides
Glossary
Practice Quiz
Guides
Next